Ritardare o inibire i processi ossidativi nel nostro organismo è fondamentale per allontanare infiammazioni, malattie degenerative e per mantenersi giovani. La molecola naturale maggiormente ricca di proprietà antiossidanti è l’Astaxantina, un pigmento prodotto da microalghe fotosintetiche che si ritrova poi in diversi organismi tra cui pesci e crostacei che si nutrono di queste microalgheunivers.
Oggi la produzione di questa molecola richiede costi elevati da parte del mondo industriale perché è possibile ottenerla in quantità molto basse. Ora però si apre una nuova frontiera. La prestigiosa rivista Scientific reports del gruppo Nature ha pubblicato un importante studio che svela i motivi alla base della bassa produttività di questa molecola osservata in colture di alghe.
La ricerca è coordinata da Matteo Ballottari, docente di fisiologia vegetale dell’università di Verona e realizzata insieme al Politecnico di Milano e al Center for Nano Science and Technology dell’Istituto italiano di tecnologia (CNST – IIT Milano).
I risultati ottenuti permettono di delineare innovative strategie biotecnologiche per aumentare significativamente la produzione di astaxantina in microalghe o ingegnerizzare piante superiori per produrre questo pigmento.
Che cos’è l’Astaxantina? E’ un pigmento di elevato interesse industriale con applicazioni che vanno dalla produzione di mangimi per pesci per ottenere la desiderata colorazione rossa, alla cosmetica e nutraceutica grazie al suo forte potere antiossidante. L’astaxantina è, infatti, tra le molecole naturali con il potere antiossidante più forte e, per questo motivo, sono in via di studio applicazioni di questa molecola come agente anti-tumorale, anti-infiammatorio e per la protezione della pelle dai raggi UV.
I risultati dello studio effettuato dal gruppo di ricerca guidato da Matteo Ballottari ha permesso di comprendere i motivi che stanno alla base della bassa produttività osservata in colture di alghe che producono astaxantina. “Questa molecola – spiega Ballottari – ha, infatti, una duplice funzione; da un lato protegge il DNA della cellula da possibili danneggiamenti, dall’altro si lega alle componenti cellulari responsabili della fotosintesi nell’alga destabilizzandoli, abbassando così la capacità di utilizzo dell’energia solare per la produzione di biomassa.
I risultati che abbiamo ottenuto permettono ora di delineare innovative strategie biotecnologiche per aumentare significativamente la produzione di astaxantina in microalghe o ingegnerizzare piante superiori per produrre questo pigmento. In questo modo, l’obiettivo è quello di rendere l’utilizzo di astaxantina più accessibile per le varie applicazioni, considerando soprattutto l’importanza di questa molecola per la salute umana”.
L’attività di ricerca è stata svolta all’interno di un progetto quinquennale, iniziato nel 2016, denominato Solenalgae finanziato per quasi 1.5 milioni di euro dall’European Research Council, prestigioso programma di sovvenzione della Commissione Europea, che sostiene ricercatori di eccellenza e progetti di ricerca innovativi e pioneristici.